Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 243: 116124, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520959

RESUMO

Peptide mapping is the key method for characterization of primary structure of biotherapeutic proteins. This method relies on digestion of proteins into peptides that are then analyzed for amino acid sequence and post-translational modifications. Owing to its high activity and cleavage specificity, trypsin is the protease of choice for peptide mapping. In this study, we investigated critical requirements of peptide mapping and how trypsin affects these requirements. We found that the commonly used MS-grade trypsins contained non-specific, chymotryptic-like cleavage activity causing generation of semi-tryptic peptides and degradation of tryptic-specific peptides. Furthermore, MS-grade trypsins contained pre-existing autoproteolytic peptides and, moreover, additional autoproteolytic peptides were resulting from prominent autoproteolysis during digestion. In our long-standing quest to improve trypsin performance, we developed novel recombinant trypsin and evaluated whether it could address major trypsin drawbacks in peptide mapping. The study showed that the novel trypsin was free of detectable non-specific cleavage activity, had negligible level of autoproteolysis and maintained high activity over the course of digestion reaction. Taking advantage of the novel trypsin advanced properties, especially high cleavage specificity, we established the application for use of large trypsin quantities to digest proteolytically resistant protein sites without negative side effects. We also tested trypsin/Lys-C mix comprising the novel trypsin and showed elimination of non-specific cleavages observed in the digests with the commonly used trypsins. In addition, the improved features of the novel trypsin allowed us to establish the method for accurate and efficient non-enzymatic PTM analysis in biotherapeutic proteins.


Assuntos
Fragmentos de Peptídeos , Proteínas , Mapeamento de Peptídeos/métodos , Tripsina/química , Fragmentos de Peptídeos/química , Peptídeos/análise
2.
Proc Natl Acad Sci U S A ; 119(15): e2116826119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377789

RESUMO

During spermatogenesis, spermatogonia undergo a series of mitotic and meiotic divisions on their path to spermatozoa. To achieve this, a succession of processes requiring high proteolytic activity are in part orchestrated by the proteasome. The spermatoproteasome (s20S) is specific to the developing gametes, in which the gamete-specific α4s subunit replaces the α4 isoform found in the constitutive proteasome (c20S). Although the s20S is conserved across species and was shown to be crucial for germ cell development, its mechanism, function, and structure remain incompletely characterized. Here, we used advanced mass spectrometry (MS) methods to map the composition of proteasome complexes and their interactomes throughout spermatogenesis. We observed that the s20S becomes highly activated as germ cells enter meiosis, mainly through a particularly extensive 19S activation and, to a lesser extent, PA200 binding. Additionally, the proteasome population shifts from c20S (98%) to s20S (>82 to 92%) during differentiation, presumably due to the shift from α4 to α4s expression. We demonstrated that s20S, but not c20S, interacts with components of the meiotic synaptonemal complex, where it may localize via association with the PI31 adaptor protein. In vitro, s20S preferentially binds to 19S and displays higher trypsin- and chymotrypsin-like activities, both with and without PA200 activation. Moreover, using MS methods to monitor protein dynamics, we identified significant differences in domain flexibility between α4 and α4s. We propose that these differences induced by α4s incorporation result in significant changes in the way the s20S interacts with its partners and dictate its role in germ cell differentiation.


Assuntos
Complexo de Endopeptidases do Proteassoma , Espermatogênese , Espermatogônias , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Espermatogônias/enzimologia
3.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469738

RESUMO

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Assuntos
Encéfalo/enzimologia , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/enzimologia , Enzimas Multifuncionais/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Ligação Competitiva , Encéfalo/patologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
Nat Commun ; 11(1): 6140, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262340

RESUMO

Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αß or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic ß-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the ß-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.


Assuntos
Autoantígenos/metabolismo , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Regulação Alostérica , Autoantígenos/química , Autoantígenos/genética , Humanos , Espectrometria de Massas , Proteínas Musculares/química , Proteínas Musculares/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica
5.
Anal Chem ; 92(16): 10881-10890, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32649184

RESUMO

The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.

6.
Anal Chem ; 92(16): 10872-10880, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32667808

RESUMO

Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic-to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here.


Assuntos
Biofísica/métodos , Biologia Computacional/métodos , Espectrometria de Massas/estatística & dados numéricos , Espectrometria de Massas/métodos , Proteínas/análise
7.
EMBO J ; 39(3): e102525, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919869

RESUMO

Extracellular vesicles are emerging key actors in adipocyte communication. Notably, small extracellular vesicles shed by adipocytes stimulate fatty acid oxidation and migration in melanoma cells and these effects are enhanced in obesity. However, the vesicular actors and cellular processes involved remain largely unknown. Here, we elucidate the mechanisms linking adipocyte extracellular vesicles to metabolic remodeling and cell migration. We show that adipocyte vesicles stimulate melanoma fatty acid oxidation by providing both enzymes and substrates. In obesity, the heightened effect of extracellular vesicles depends on increased transport of fatty acids, not fatty acid oxidation-related enzymes. These fatty acids, stored within lipid droplets in cancer cells, drive fatty acid oxidation upon being released by lipophagy. This increase in mitochondrial activity redistributes mitochondria to membrane protrusions of migrating cells, which is necessary to increase cell migration in the presence of adipocyte vesicles. Our results provide key insights into the role of extracellular vesicles in the metabolic cooperation that takes place between adipocytes and tumors with particular relevance to obesity.


Assuntos
Adipócitos/citologia , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Melanoma/metabolismo , Obesidade/complicações , Células 3T3 , Adipócitos/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Obesidade/metabolismo , Oxirredução
8.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700495

RESUMO

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Assuntos
Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/farmacologia , Reprodutibilidade dos Testes
9.
Proc Natl Acad Sci U S A ; 115(28): E6477-E6486, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934401

RESUMO

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Assuntos
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Autoantígenos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Domínios Proteicos , Proteínas/genética
10.
Mol Syst Biol ; 11(1): 771, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25561571

RESUMO

In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Linhagem Celular Tumoral , Cromatografia de Afinidade , Cromatografia Líquida , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Espectrometria de Massas , Proteômica/métodos , Espectrometria de Massas em Tandem , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...